Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods

نویسندگان

  • Anna Ma
  • Deanna Needell
  • Aaditya Ramdas
چکیده

The Kaczmarz and Gauss-Seidel methods both solve a linear system Xβ = y by iteratively refining the solution estimate. Recent interest in these methods has been sparked by a proof of Strohmer and Vershynin which shows the randomized Kaczmarz method converges linearly in expectation to the solution. Lewis and Leventhal then proved a similar result for the randomized Gauss-Seidel algorithm. However, the behavior of both methods depends heavily on whether the system is under or overdetermined, and whether it is consistent or not. Here we provide a unified theory of both methods, their variants for these different settings, and draw connections between both approaches. In doing so, we also provide a proof that an extended version of randomized GaussSeidel converges linearly to the least norm solution in the underdetermined case (where the usual randomized Gauss Seidel fails to converge). We detail analytically and empirically the convergence properties of both methods and their extended variants in all possible system settings. With this result, a complete and rigorous theory of both methods is furnished.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rows versus Columns: Randomized Kaczmarz or Gauss-Seidel for Ridge Regression

The Kaczmarz and Gauss-Seidel methods aim to solve a linear m × n system Xβ = y by iteratively refining the solution estimate; the former uses random rows of X to update β given the corresponding equations and the latter uses random columns of X to update corresponding coordinates in β. Interest in these methods was recently revitalized by a proof of Strohmer and Vershynin showing linear conver...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Paving the Randomized Gauss-Seidel

The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves overdetermined systems of linear equations Ax = b. This paper studies an update on the RGS method, the Randomized Block Gauss-Seidel Method(RBGS). At each step, the algorithm greedily minimizes the objective function L(x) = kAx bk2 with respect to a subset of coordinates. This paper describes a Randomized Block Gauss...

متن کامل

Randomized Block Kaczmarz Method with Projection for Solving Least Squares

The Kaczmarz method is an iterative method for solving overcomplete linear systems of equations Ax = b. The randomized version of the Kaczmarz method put forth by Strohmer and Vershynin iteratively projects onto a randomly chosen solution space given by a single row of the matrix A and converges exponentially in expectation to the solution of a consistent system. In this paper we analyze two bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015